Stimulation of Transforming Growth Factor-β1-Induced Endothelial-To-Mesenchymal Transition and Tissue Fibrosis by Endothelin-1 (ET-1): A Novel Profibrotic Effect of ET-1
نویسندگان
چکیده
TGF-β-induced endothelial-to-mesenchymal transition (EndoMT) is a newly recognized source of profibrotic activated myofibroblasts and has been suggested to play a role in the pathogenesis of various fibrotic processes. Endothelin-1 (ET-1) has been implicated in the development of tissue fibrosis but its participation in TGF-β-induced EndoMT has not been studied. Here we evaluated the role of ET-1 on TGF-β1-induced EndoMT in immunopurified CD31+/CD102+ murine lung microvascular endothelial cells. The expression levels of α-smooth muscle actin (α-SMA), of relevant profibrotic genes, and of various transcription factors involved in the EndoMT process were assessed employing quantitative RT-PCR, immunofluorescence histology and Western blot analysis. TGF-β1 caused potent induction of EndoMT whereas ET-1 alone had a minimal effect. However, ET-1 potentiated TGF-β1-induced EndoMT and TGF-β1-stimulated expression of mesenchymal cell specific and profibrotic genes and proteins. ET-1 also induced expression of the TGF-β receptor 1 and 2 genes, suggesting a plausible autocrine mechanism to potentiate TGF-β-mediated EndoMT and fibrosis. Stimulation of TGF-β1-induced skin and lung fibrosis by ET-1 was confirmed in vivo in an animal model of TGF-β1-induced tissue fibrosis. These results suggest a novel role for ET-1 in the establishment and progression of tissue fibrosis.
منابع مشابه
Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition.
BACKGROUND Persistently high plasma endothelin-1 (ET-1) levels in diabetic patients have been associated with the development of cardiac fibrosis, which results from the deposition of extracellular matrix and fibroblast recruitment from an as-yet unknown source. The underlying mechanism, however, remains elusive. Here, we hypothesize that ET-1 might contribute to the accumulation of cardiac fib...
متن کاملBosentan and macitentan prevent the endothelial-to-mesenchymal transition (EndoMT) in systemic sclerosis: in vitro study
BACKGROUND Systemic sclerosis (SSc) is characterized by early vascular abnormalities and subsequent fibroblast activation to myofibroblasts, leading to fibrosis. Recently, endothelial-to-mesenchymal transition (EndoMT), a complex biological process in which endothelial cells lose their specific markers and acquire a mesenchymal or myofibroblastic phenotype, has been reported in SSc. In the pres...
متن کاملHypoxia-inducible factor prolyl-hydroxylase-2 mediates transforming growth factor beta 1-induced epithelial-mesenchymal transition in renal tubular cells.
Transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in kidney epithelial cells plays a key role in renal tubulointerstitial fibrosis in chronic kidney diseases. As hypoxia-inducible factor (HIF)-1α is found to mediate TGF-β1-induced signaling pathway, we tested the hypothesis that HIF-1α and its upstream regulator prolyl hydroxylase domain-containing prote...
متن کاملEndothelin-1, via ETA receptor and independently of transforming growth factor-beta, increases the connective tissue growth factor in vascular smooth muscle cells.
Endothelin (ET)-1 is a potent vasoconstrictor that participates in cardiovascular diseases. Connective tissue growth factor (CTGF) is a novel fibrotic mediator that is overexpressed in human atherosclerotic lesions, myocardial infarction, and experimental models of hypertension. In vascular smooth muscle cells (VSMCs), CTGF regulates cell proliferation/apoptosis, migration, and extracellular ma...
متن کاملEndothelin-1, via ETA Receptor and Independently of Transforming Growth Factor- , Increases the Connective Tissue Growth Factor in Vascular Smooth Muscle Cells
Endothelin (ET)-1 is a potent vasoconstrictor that participates in cardiovascular diseases. Connective tissue growth factor (CTGF) is a novel fibrotic mediator that is overexpressed in human atherosclerotic lesions, myocardial infarction, and experimental models of hypertension. In vascular smooth muscle cells (VSMCs), CTGF regulates cell proliferation/apoptosis, migration, and extracellular ma...
متن کامل